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Abstract—Unmanned aerial vehicle (UAV) system plays an
important role in new edge scenarios such as disaster relief,
situational awareness, and so on. In order to improve efficiency,
computing tasks such as object detection are carried out on the
drone-mounted computing unit. However, there is a trade-off
between flight altitude and mission accuracy. Higher altitudes
result in smaller images, which influence the accuracy. In
comparison, shorter altitudes reduce the difficulty of detection
while decreasing the recognition range, which affects user
experience. Therefore, this paper proposes an airborne altitude
adaptive UAV System, Aprus, which selects the most suitable
object detection models based on a self-adaptation strategy at
different altitudes. The selection strategy is based on a purpose-
related evaluation indicator, PEI. It comprehensively considers
the model’s accuracy, recall, and inference speed at the current
altitude according to the user’s purpose. Moreover, Aprus sends
the original image to a divider instead of scaling the image
before pushing it to the model, thus ensuring that the original
picture information will not be lost. To evaluate the system, we
build a high-resolution UAV dataset with altitude, UDWA, which
contains 46037 images. From the experiments, Aprus obtained
58.52%mAP, 94.17%mAP®, 66.17%mAR, 1.61FPS results on
DJI Manifold 2G when the purpose is set to Balance mode,
and the system can be adjusted by multiple preset purposes or
according to the user customs.

Index Terms—Altitude adaptive, Purpose related, Object de-
tection, UAV system, Edge Computing, Embedded system

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have taken on important
tasks in many areas of edge computing, such as emergency
rescue, cargo transportation, remote sensing telemetry, power
grid inspection at oil sites, etc. In these scenarios, object
detection is a basic computing process. The main job of object
detection is to describe objects in an image through bounding
boxes and attribute categories.

Object detection on UAV edge devices, however, encoun-
ters more difficulties than object detection in traditional
scenarios. Firstly, traditional object detection is performed
from a perspective view. However, UAV object detection is
served from a bird’s eye view. It introduces many optical
problems, such as high shooting height, mostly overhead
angles, small target objects, many blank backgrounds, and
apparent inconsistencies in light intensity in the area caused
by a large viewing angle. Secondly, object detection on UAVs

is limited by the computing resources of drones. The current
UAVs have been equipped with a 4K resolution camera as
standard, which requires strong computing power to process.
The drone’s energy limits the length of the mission.

Therefore, there is a trade-off between the flight altitude
and the accuracy of object detection on UAV edge devices.
This brings up the two main problems:

o The flight altitude affects the accuracy of the model. The
existing models that can detect tiny objects directly from
huge original resolution images required too significant
resources to run on edge devices. However, if scaling
the picture to a smaller size, although the resources of
the edge device can meet the needs of the operation, the
scaling will also cause the object to be detected to be
compressed to a size that is difficult to detect.

« A single model cannot achieve the best performance at
all altitudes. Since many drone cameras cannot zoom,
the change of flight altitude will bring about apparent
differences in the visual range. And the focus of different
purposes is also not the same. It cause a single model to
fail to reach the global optimum because models at dif-
ferent altitudes have their advantages and disadvantages.

To solve those problems, we designed an airborne altitude-
adaptive purpose-related UAV system for object detection,
Aprus. We also publish a high-resolution UAV dataset with
altitude, UDWA, to evaluate the performance of Aprus.

As is shown in Figure 1, Aprus runs on the UAV’s
airborne edge computing device. It first acquires the drone’s
current video frame and altitude and uses the remoter to
request the user’s purpose. Then the altitude and purpose are
sent to the altitude-driven self-adaptation algorithm to obtain
the target size of the image divider and the most suitable
model. The high-resolution image divider will convert the
original video frame to fit the model’s input requirements and
use the most convenient model to complete the inference in
the next step. The sharded results of the model inference will
go through a reassembler with the divide info to splice into a
complete result. Finally, finish the object detection and show
it to the user through the remoter. In addition, compared with
some works using on-ground edge computations [4, 6, 37],
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Fig. 1. System Structure.

computing on airborne edge devices can eliminate the need to
ensure stable and low-latency high-bandwidth communication
between air and ground and provide many application scenar-
ios without on-ground edge support. However, it may not be
able to match the computationally rich ground resources in
terms of processing speed comparison.

The high-resolution UAV dataset, UDWA, contains the al-
titude information and other geographic information taken,
which is used to understand the model’s performance at dif-
ferent altitudes and provide data support for the development
of the Aprus system. The most significant feature of this
dataset is that it provides image data at different altitudes
at the same location, which is extremely important for the
altitude-driven self-adaptation algorithm.

Based on the experiment results, we can conclude that the
actual performance of Aprus is better than all single models,
and it can self-adaptive achieve the best detection results at
all different altitudes by user’s purpose.

The contributions in this paper are as follows:

« We constructed an airborne UAV system for object de-
tection, Aprus. It obtains real-time images and altitude
from the drone, and adaptive selects the most suitable
model for detection according to the user’s purpose.

o We published a high-resolution UAV dataset with alti-
tude, UDWA, which contains 39 scenes, six altitudes, and
a total of 46037 pictures with a resolution of 3840x2160.
UDWA is the first UAV object detection dataset focused
on altitude, as far as we know.

o We obtained a dynamic image pre-processing method of
dividing one picture into multiple small-size images to
replace the down-scale step in the detection, ensuring
that the original picture information will not be lost
during the training and testing process. It can generally
run under the equipment with limited resources.

o We designed a purpose-related evaluation indicator, PET,
and an altitude-adaptive algorithm. The indicator in-

cludes seven purpose which can be selected by users.
The algorithm is designed to build the airborne detection
system for auto-selection at different altitudes.

The rest of the paper is organized as follows. Section II
described UDWA, the UAV Dataset with Altitude. Section III
presented the design and implement of the altitude-adaptive
airborne system, Aprus. Section IV showed the experiment
setup and analysed the experimental results. Section V intro-
duced the related work. Section VI summarized the paper.

II. UDWA: UAV DATASET WITH ALTITUDE
A. Why Need a New Dataset

In recent years, researchers have proposed many datasets
for drone object detection. However, these datasets lack the
altitude label which is necessary to build the altitude-related
drone system. For example, VisDrone [39] dataset does not
provide the altitude information and the altitude of AU-
AIR [2] dataset is limited to 30 meters. Based on the current
height of buildings in the city, we set the minimum altitude to
50 meters to avoid collisions. The maximum altitude should
not exceed 100 meters for legal and flight safety reasons. Both
VisDrone and AU-AIR took a large number of photos at a
fixed location, which were repeatedly moved horizontally at
similar heights. Therefore these two datasets are not suitable
for altitude-driven tasks. These push us to collect a new drone
dataset for building the altitude-adaptive system.

B. Collection Platform

We used DJI Mavic Air 2! and DJI Fly? to capture the video
stream. As a portable drone, Mavic Air 2 has the ability of
capturing high-resolution video, in 4K Ultra HD HDR mode,
the video resolution is 3840x2160 and the sampling frequency
is 30 frames per second (FPS).

Uhttps://www.dji.com/mavic-air-2
Zhttps://www.dji.com/dji-fly
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Fig. 2. UDWA Examples: Four Scenarios with Annotations in Different Altitudes (from 50 meters to 100 meters) .

C. Dataset Description

By leveraging the collection platform, this paper collected
the UAV Dataset with Altitude, UDWA. It contains 179 original
video clips and the total video length is about 13 hours.
The length of each clip is about 4 minutes and 50 seconds.
We extracted it to 46028 images in JPEG format.UDWA are
publicly available at GitHub?.

For altitude-driven, we chose 6 flight altitudes: 50 meters,
60 meters, 70 meters, 80 meters, 90 meters, and 100 meters.
To focus on the different altitudes, the horizontal position
under one location will not change. There are only six
certain altitudes, and the camera’s downward angle remains
unchanged at 45 degrees.

For purpose-related, we selected 39 different places for
shooting and data dividing. These places are mainly schools,
subway stations, commercial streets, and tourist attractions.
We choose these places because they can cover most of the
usage scenarios of drones in cities with different purposes.

Moreover, all pictures extracted from the video maintain
a high resolution of 3840x2160, and no down-sampling is
performed. The original video is 30fps. According to the
actual speed of the object to be detected, the first frame of
each second is selected as the extracted picture.

All data was captured in public venues or with the permis-
sion of the venue owner. Furthermore, based on the shooting
height and angle of view, there will be no clear faces in the
dataset, avoiding potential privacy issues.

3https://github.com/Aprus-system/UDWA

D. Dataset Annotation

The proposed system mainly focus on the road and pedes-
trian monitoring scenarios, so the tags of the dataset have only
two categories: person and car. Here we define that the person
who appears in the picture regardless of the posture is marked
as person, and all four-wheeled and three-wheeled vehicles
are marked as car. It should be noted that motorcycles and
bicycles themselves do not belong to car, but their drivers
and passengers belong to person.

To complete the self-adaptation system, we selected four
places with fewer goals and marked a total of 2866 pic-
tures. Each of these pictures contains about 10-50 marker
boxes, and most of them include objects of two categories
simultaneously. It takes about 5 minutes on average to mark
such a picture. We carry out 8 hours of marking a day and
finally complete the marking of 2866 pictures in 30 days.
We will continue to annotate other pictures and use them
for future research. Figure 2 presents the example of UDWA,
which includes four scenarios and each contains the annotated
information from 50 meters to 100 meters.

The 2866 annotated pictures are divided with 8:2 into
the training set and validation set. We call the remaining
unlabeled pictures the test-challenge set. The final training
set contains 2290 pictures, the validation set contains 576
pictures, and the test-challenge set contains 43162 pictures.
These pictures are divided according to 50 meters, 60 meters,
70 meters, 80 meters, 90 meters, 100 meters, which is
convenient for testing the accuracy and other performance at
different altitudes. In the future, we will continue expanding



the UDWA dataset and improve the annotation work with the
help of the community.

III. THE SYSTEM DESIGN AND IMPLEMENTATION OF
APRUS

Aprus is designed to run on airborne edge computing
devices, and it obtains data through the hardware interface
between the edge device and the drone. The system will
continuously process data and return the detection results.

The main component of Aprus consists of three parts:
a high-resolution image divider, a purpose-related evaluation
indicator, and an altitude-driven self-adaptation algorithm.

A. High-resolution Image Divider

Aprus includes a dynamic high-resolution image divider,
as is shown in Figure 3, which divides the raw image into
multiple small-size images. Resizing the raw image is the
first step of object detection, which is used to meet the input
requirements of different detect models. Meanwhile, resizing
the image can reduce the hardware resources required for
computing. In order to apply to the specific scenarios of
UAVs, Aprus made two innovations in the resizing process.
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Fig. 3. Schematic Diagram of Image Divider.

Firstly, Aprus adopts the dividing method instead of down-
scaling when resizing the high-resolution images.

Due to the small proportion of the object in the original
image in the drone scene, the traditional scaling method scales
the high-resolution image to a small-size image. It then takes
this small image as the input of the model, which results in
a large amount of information lost [21]. For example, most
persons will be completely invisible if the image is scaled to
the widely-used 640*640 size. However, if the scaled size is
further increased beyond 1280%1280, most detection models
will be hard to train and cannot run on airborne edge devices.

The difference is that Aprus splits a high-resolution image
into multiple smaller images of a specific size, and then

the reassembler will generate the final result. The dividing
method refers on the CNN sliding window algorithm [25].
Figure 3 shows the process of dividing the original image into
three commonly used input sizes of object detection models:
416*416, 640*640, 1280*1280, and recombining them after
model inference. It reserved every detail in the original image.

Secondly, Aprus dynamically changes the order of divi-
sions when passing in a new image.

Since the divider turns a complete image into multiple small
copies, it may reduce the detection rate of objects on the
boundaries of the images. In order to solve this problem,
Aprus’s divider dynamically changes the sliding window
order when running, such as switching from left-right to right-
left or from top-bottom to bottom-top. It will also add padding
to the edge before the sliding split and delete it in the sub-
image to change the position of the borderline in the original
while keeping the total size of the output unchanged. Aprus
uses these two methods to avoid objects on the boundary line
that are often unable to be detected by the model because the
boundary line is always in a fixed position.

In addition, the reduction of local detection rate can be
ignored in the long-term detection of UAV scenes. Since both
the drone and the detected object are constantly in motion,
the object will not always be located on the boundary line,
so it will not have a long-term impact on the overall result.

B. Purpose-related Evaluation Indicator

Different configurations of the detection model can gen-
erate a large number of sub-models that behave differently.
Therefore, Aprus designs a new indicator for evaluating the
model’s actual performance at different altitudes intuitively.

This paper chooses mean Average Precision (mAP), mean
Average Precision at Intersection over Union equals 0.5
(mAP®%), and mean Average Recall (mAR) in the MS
COCO assessment protocol [19] as part of the new evaluation
indicator. As the main indicator of COCO, mAP can well
reflect the detection ability of the module. However, since it
is the average evaluation result in the interval of [0.5, 0.95]
with a step length of 0.05 as the value of the Infersection
over Union (IoU). mAP%Y is evaluated with a fixed IoU value
of 0.5, which can reflect the user’s perception in the actual
detection task. As a measure of the missed detection rate,
mAR is not taken seriously in many object detection studies.
Here selects mAR as one of the indicators since it is vital in
practical scenarios with small and crowded detection objects.
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This paper proposes a Purpose-related Evaluation Indicator,
PEI;p, to select the most suitable model for application
scenarios at different altitudes and determine the weight of
accuracy, recall, and speed based on the user’s purpose.
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PEI; p) is defined in Eq (1), which indicate the score of the
i-th model under h altitude. Among them, we use the root
mean square to measure the impact of mAP and mAP?° on
the accuracy rate. mAR presents the recall rate. To keep the
speed consistent with the other two dimensions, we leverage
an arctangent function to normalize the speed to [0, 1], which
is often used in related work [12, 32].

Where mAP, mAP%, and mAR are the COCO indicators
of the ¢-th model at altitude h, and t is the average time
required for the model to infer once. «, 8, and ~y are preset
coefficients for different purposes.
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Fig. 4. 3D Indicator Space Consisting of mAP, mAR, and FPS.

As is shown in Figure 4, we make up a three-dimensional
space of mAP, mAR, and FPS and select seven specific points
in this 3D space to form the new evaluation indicator. The
maximum points of the three axes are regarded as the best
purposes, the three points that only deviate from one of the
axes as the first purposes, and the average point on the three
axes is regarded as the Balance purpose. Therefore, the seven
points are defined as seven typical purposes: mAR first, mAR
best, mAP first, mAP best, FPS first, FPS best, and Balance.
The specific parameter values are shown in Table L.

TABLE I
PRESET COEFFICIENTS IN TYPICAL PURPOSES

coefficients
mAP mAR FPS
a B v

mAR first 8 84 8
mAR best 1 98 1
mAP first 84 8 8
mAP best 98 1 1
FPS first 43 43 14
FPS best 1 1 98
Balance 46 46 8

Purpose

In most usage scenarios, Balance purpose can achieve opti-
mal accuracy, recall, and speed. However, in some scenarios,
specific indicators may be more critical. For example, the
first thing to ensure in disaster relief is that no target is
missed. In this case, mAR first is more worthy of choice than
Balance. In urban road monitoring, object detection accuracy
is more important because we cannot accept the award of
cars as persons, so we should choose mAP first. In high-speed

intersection flow monitoring, the target’s speed is breakneck,
and the detection speed of the system is more important. In
this case, FPS first is more suitable. At the same time, to
cover some more extreme scenarios, we also designed three
best purposes to cope with the higher requirements for a
single indicator. In summary, the selected seven points can
completely cover all corners of the three-dimensional space.

C. Altitude-driven Self-adaptation Algorithm

Based on the methods in the previous two sections, we
design the Algorithm 1 to build an airborne altitude-adaptive
purpose-related UAV system for object detection.

Algorithm 1:

Input: User selected purpose: P
1 while not terminated do
2 h,v < Get the current altitude and video frame
from the drone;
3 if The algorithm is the first time running or The
user is requesting to modify the purpose then

4 P < Get new purpose from user’s request;

5 if P in Preset Coefficients then

6 PET + Get the pre-computed PE] table
by P;

7 else

8 «, B, < Get the coefficients from the
user’s custom setting;

9 PEI + Calculate each model’s PEI by
o, B, 7

10 if The algorithm is the first time running or The
current altitude had been changed or The PET
table had been changed then

11 imaz < Get the i in MAX(PEI(; p));

12 f(x) < Get the i,,4,-th of models;

13 divider(v) < Get the image divider with the

input sizes of f(z);

14 R,qw < An empty list to bearer detection
results;

15 foreach z; in divider(v) do

16 r; < Evaluate f(x;);

17 Extend R4 by 745

18 reassembler(l) < Get the reassembler from
divider(v);

19 R «+ Evaluate reassembler (R qq);

20 Send R to the user;

Algorithm 1 defines a loop that continuously obtains the
drone’s current video stream and altitude information. The
PET’s preset coefficients are determined according to the
user’s purpose. The PET of all models at different altitudes
and for different preset purposes have been evaluated before
system operation. If the user chooses to customize PFEIs
coefficients, the system will recalculate the PEI value based
on each model’s existing altitude-related evaluation data.
Therefore, it is only necessary to adaptively select the model
with the highest PET value for reasoning based on the current



TABLE I
DIFFERENT MODEL CONFIGURATIONS EXCERPT (12/75)

Basic Detection Deep Learning Network Divide mAP  mAP® mAR FP16 TRT
Network Framework Framework Configuration Size(px) Time(s) Time(s)
yolox YOLOX Pytorch nano 416 0.385 0.766 0.5 1.53 0.592
yolox YOLOX Pytorch s 640 0.479 0.872 0.597 3.937 0.907
yolox YOLOX Pytorch X 1280 0.59 0.945 0.664  31.932 N/A
yolov5 ultralytics/yolov5 Pytorch n5-6 640 0.466 0.85 0.572 1.671 0.363
yolov5 ultralytics/yolov5 Pytorch mb6 1280 0.593 0.946 0.671 7.428 1.476
yolov5 ultralytics/yolov5 Pytorch X6-6 1280 0.597 0.948 0.678 25.504 4.699
ppyolo PaddleDetection PaddlePaddle tiny 640 0.354 0.74 0.454 1.262 0.638
ppyolo PaddleDetection PaddlePaddle r18vd 640 0.443 0.832 0.578 4.095 0.82
ppyolov2 PaddleDetection PaddlePaddle r101vd_den 1280 0.595 0.948 0.705 14.773 6.459
faster_rcnn MMDetection Pytorch swin-t_fpn_ms-crop 1280 0.568 0.934 0.646 20.699 N/A
retinanet MMDetection Pytorch pvtv2-b0_fpn 1280 0.541 0.907 0.631 19.373 N/A
faster_rcnn PaddleDetection PaddlePaddle den_r50_fpn 1280 0.548 0915 0.646 19.816 19.853

information. The image will also be cut according to the input
size required by the model and reorganized after the inference
is completed. Finally, the complete detection result is sent to
the user, and the loop continues to be executed.

Notably, we implemented the system only in the situation
that when loading a few selected models with the purpose
changing. This steps from the fact that the user will not change
the purpose frequently in a flight mission, and the number of
models selected under a single purpose is small and fixed.
This can effectively reduce the performance overhead caused
by reloading the model when the altitude changes. It can also
avoid loading too many models at one time beyond the range
that the memory of the edge device can accommodate.

IV. EXPERIMENT
A. System Equipment and Model Preparation

To obtain the real-time video stream and current status
information of the drone, we chose the combination of DIJI
M210 V2* and Manifold 2-G°. DJI M210 V2 is a medium-
sized drone that can be used in various industrial applications.
Manifold 2-G is an edge computing device that can be
mounted on drones by this combination. And with the help
of the official Onboard SDK® to get various data streams and
control drones in real-time.

This paper selects seven object detection models as the
benchmarks: YOLOX [11], YOLOVS [15], PPYOLO [22],
Swin [20], PVT [36, 35], YOLOV3 [26], and Faster-R-
CNN, referring to the VisDrone Object Detection in Images
Challenge [3]. As the general detection models, YOLOX,
YOLOVS5, and PPYOLO have been widely used in various
situations and have better stability and reliability. They are
easier to deploy on airborne edge devices since they have
optimized resource-constrained scenarios and require less
computation. Swin [20] and PVT [36, 35] are two modern
transformer-based detection networks, which all perform well
on the COCO dataset [19], so we hope to explore their role in
the Aprus system as well. Two traditional models, YOLOV3

“https://www.dji.com/matrice-200-series-v2
Shttps://www.dji.com/manifold-2
Shttps://developer.dji.com/onboard-sdk/

and Faster-R-CNN network optimized by DCN [5, 40] are
also used as part of the experimental comparison to increase
the robustness of the results further.

Before evaluating the model, we need to train the model
first. To avoid overfitting during training, we mix the UDWA
training set and VisDrone-DET. At the same time, to ensure
the objectivity of comparison, the different configurations of
YOLOX, YOLOVS5, PPYOLO, and YOLOV3 are all trained
at a batch size of 8. However, the other models such as
Swim and PVT can only be trained with a batch size of
1 due to GPU memory limitations. All training was run
under NVIDIA A100-PCle-40GB with 36 epochs, and it
took 4 GPU cards and two months to complete the training.
The different configurations of the seven detection models
generated seventy five sub-models.

After completing the training, we obtain the inference speed
of different models on edge devices. We convert all models to
TensorRT and use FP16 inference to achieve a faster speed.
We did not use TensorRT in INT8 mode because it requires
calibration and significantly impacts inference accuracy.

As the result of model preparation, Table II details the
basic network, detection framework, deep learning frame-
work, network configuration, and divide size adopted by the
model. The inference time of all models before and after
TensorRT acceleration is also compared. It should be noted
that if the inference time in the table is N/A, the model
cannot be accelerated by TensorRT. In addition, the mAP,
mAP>® and mAR of each model are the average values at
all altitudes, which are collected from the same scenario and
only provided for reference. Due to space constraints, this
table shows only the most representative 12 configurations,
and the results by altitude will not be listed and will be used
directly for subsequent model selection. For the configuration
of other models, please refer to the full table on the GitHub’.

From the experimental results, the YOLO series model has
achieved a maximum speed of 5x by TensorRT acceleration
compared with the unconverted model. In contrast, other
models have no noticeable effect or even a slight decline. As

"https://github.com/Aprus-system/table/blob/main/model_cfg.md



a result, YOLO series models will use TensorRT acceleration
in FP16 mode in subsequent experiments, and other models
will only use FP16 inference. Furthermore, we also observe
that the YOLO series always outperforms the other series
regardless of the framework based on it, while the state-of-the-
art Swin and PVT perform much worse than expected. This
may be related to the inflexibility to support high-resolution
images and limitations of local attention are perhaps the main
bottlenecks on the transformer-based models[30].

Result 1: The accuracy of the detect model will be affected
by the image divide size. The smaller the size, the lower the
accuracy. Therefore, Aprus’ divider selects the image with
the largest size within the computing power of the edge device.

B. Self-adaptation Model Selection

Based on the PETI and the UDWA verification set, which was
partitioned by altitudes, we can quickly obtain model selection
results by the altitude-driven self-adaptation algorithm for
different purposes. The results of self-adaptation selection can
be seen in Table III.

TABLE III
RESULTS OF SELF-ADAPTATION SELECTION

Purpose  50M 60M 70M 80M 90M 100M

yolov5 yolov5 ppyolo
mAR 5 56-6 v2r101

S S S S
first 1280 1280 1280 1280 1280 1280

mAR ppyolo  ppyolo  ppyolo ppyolo ppyolo  ppyolo
v2rl01  v2r101  v2rl01 v2r50 v2r50 v2rl01

best 1280 1280 1280 1280 1280 1280

yolov5  yolov5 yolov5
6 5 6

mAP yolovS  yolovS  yolovS yolovS yolovS  yolov5
s6 56-6 s6 56-6 56 s5
first 1280 1280 1280 1280 1280 1280
mAP ppyolo  yolovS  yolovS  yolov5 yolov5  yolov5
v2r50 16-6 16 x5 §5-6 x5

best 1280 1280 1280 1280 1280 1280
FPS yolov5  yolov5 yolovS yolov5 yolov5 yolovs
n6-6 n6-6 n6-6 56-6 56 n6-6

first 1280 1280 1280 1280 1280 1280
FPS yolov5  yolov5 yolov5 yolov5 yolov5  yolovs
n6-6 n6-6 n6-6 n6-6 n6-6 n6-6

best 1280 1280 1280 1280 1280 1280
yolovS  yolovS  yolovS yolovS yolovS  yolov5

Balance s6 56-6 s5 56-6 56 s5

1280 1280 1280 1280 1280 1280

From the results of self-adaptation model selection, all
the selected models are YOLO series. For most purposes,
the model based on YOLOVS has been selected the most
times. The model based on PP'YOLOV2 performs best under
the purpose of focusing on mAR. The YOLOX-based and
YOLOV3-based model, like other series models, was not
selected to enter the system, indicating that its comprehensive
performance is worse than the above two models.

C. System Performance Evaluation

After completing the model selection, we built the object
detection system based on the results of the module selection
and evaluated the overall altitudes performance of the system.
The results are shown in Image 5.

From the test results, FPS first’s comprehensive PET in-
creased the most, with 46.80%, while mAR first increased the
least, but it also had 6.64%. This proves that the proposed

100 { ™ mAR first 100
= mAR best

_ 95 mmm mAP first 95

R 907 mm mAP best 90
2 857 mmm FPS first res _
< 80 mmm FPS best teo X
£ I 4
= ] L <
S 75 75 T

T 701 70

<

£ 65 r 65

60 r 60

55 I 55

50 - - 50

indicators
(a) mAP, mAP5% and mAR

5 | WM mAR first 10

. mAR best S 9

. MAP first = I8

41 mmm mAP best 7
= B FPS first g
& 34 mmm FPS best 6 2
Q mm Balance 5 §
< 49

3

1 2

1

0

FPS POWER
indicators

(b) FPS and POWER

Fig. 5. System Performance in Different Purposes.
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Aprus is effective. In addition, considering all the purposes,
the detection performance of Aprus increased from 50
meters, reached the highest point at 70 meters, and then began
to descend until the minimum at 100 meters.

From the performance evaluation data, the system real-
izes the focused selection of different modules for different
purposes. Among them, we also found that if we focus on
mAR, the reduction in FPS is more evident than when we
focus on mAP. If you pay attention to FPS, other evaluation
indicators will be reduced. All indicators are more average
in the Balance purpose, which should be the most suitable
choice for most practical tasks.

Power consumption is a key focus of drone researchers,
so this paper evaluates the energy consumption of Aprus
for different purposes and show it in the last column of
Figure 5(b). The battery capacity of the drone is 174.6Wh and
the maximum flight time is 34 minutes. So the POW ER of
the system is defined as the total power consumed by Aprus
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Fig. 7. Evaluate System in Different Purposes.

to infer images at different altitudes for 34 minutes continu-
ously. All power consumption data comes from connecting a
high-precision ammeter between the airborne edge computing
equipment and the drone.

Result 2: According to the experimental results, Aprus
itself has little impact on the power consumption of the
whole drone system. The system will consume a maximum
of 9.00Wh, which is about 5.15% of the battery capacity, and
minimum consumption of 7.29Wh, which is about 4.17% of
the battery capacity.

At the same time, we compare the adaptive approach pro-
posed in this paper with other single-model without adaptation
approaches. We first set the Aprus in the Balance purpose.
The results are shown in Figure 6. For the convenience of the
display, here, only 9 of the 75 single models are shown for
comparison with Aprus.

Result 3: Aprus is better than all single models, and it
can achieve the best detection results at all different altitudes.
Compared to randomly selecting one of the single models,
Aprus’s comprehensive PEI at all altitudes increased by
6.64%. In the sub-altitude comparison, the highest increase
is 6.87% at an altitude of 90 meters, and the lowest increase
is 5.78% at 80 meters.

Similarly, we also evaluate the performance under other
purposes, and the results are shown in Figure 7 and consistent
with the conclusions under the Balance purpose.

Outlook: As seen from Figure 7(f), the results of our PET
indicator under the purpose of FPS best are relatively unitary,
unlike other purposes with apparent changes.

This result is that the inference speed of different models
does not change because the field of view of the input image is
changed at different altitudes, not the size of the input image.
However, if the overall weight of speed on the indicator is
too large, the influence of other indicators will be mostly
ignored, resulting in a single evaluation result. This problem
can also be seen in Table III’s selection. In the future, we

will consider more models with different inference speeds
at different altitudes, which can enrich the meaning of the
purpose of FPS best and improve the robustness of Aprus.

V. RELATED WORK
A. UAVs Datasets

Datasets play an essential role in the training of deep
learning networks, and their quality directly affects accu-
racy. Among them, the MS-COCO [19] and Pascal-VOC [9]
datasets are popular to train and evaluate the mainstream
object detection models. With the proliferation of UAV-based
applications, aeronautical vision datasets that is used for
training object detection models have gradually emerged. Two
data sets with the greatest reference value are as follows:

1) VisDrone Dataset: The VisDrone [39] Dataset contains
179,264 frames and 10,209 static images acquired from the
aerial perspective collected under various weather and light-
ing conditions using different drone platforms. It manually
annotated more than 2.6 million bounding boxes.

2) AU-AIR Dataset: The AU-AIR [2] Dataset is a multi-
modal aerial dataset captured by a UAV. AU-AIR meets vision
and robotics for UAVs. The most unusual are frames labeled
with time, GPS, IMU, altitude, linear velocities of the UAV.

At the same time, many data sets for UAVs were proposed,
such as UAVDT [8], UAVid [24], UAV-BD [33]. However,
none of these datasets contains images and labels at different
altitudes for the same location, which is necessary to build
an altitude adaptive drone system. Therefore, this paper built
a dataset with altitude labels in Section II.

B. Object Detection Model

Object detection models are divided into two routes accord-
ing to whether deep learning is used. For those that do not
use deep learning, three classic detectors: Viola-Jones [31],
HOG [7] and DPM [10] are mainly used.



However, with the manual selection of features, the per-
formance of the technology tends to be saturated. Currently,
the most effective object detection model is based on deep
learning. It is mainly divided into two categories:

1) two-stage model: 1t first proposes an image area that
may contain an object by a region-based CNN and then
classifies the area into a predefined object category. Faster-
R-CNN [28] is one of the well-known two-stage models.

2) one-stage model: It has only one network to directly
convert the object detection problem into the bounding box,
without the need for a separate image classifier to perform
the second-stage processing. YOLO [27] and RetinaNet [18]
are popular object detectors that belong to one-stage models.

C. Airborne UAV System Design

At present, Airborne UAV systems is mostly designed for
collecting data and executing the lightweight tasks to meet
the application needs. This section presents several common
airborne UAV system research and development directions:

1) environment monitoring: In 2017, a change detection
system based on histogram equalization and RGB local binary
pattern (RGB-LBP) operator [1] was proposed for wide-
area monitoring of small low-altitude drones. In 2020, a
agricultural automatic detection system [38] was proposed,
which uses YOLOV3 and YOLOV3-tiny for weed detection.

2) human detection: In 2019, an unsupervised human
detection system for on a fully autonomous drone [23] was
proposed. It combines global navigation satellite system for
accurate human detection and rescue equipment freed. In
2020, two drone-based surveillance applications using aerial
thermal imaging human detection systems [16, 17] were
proposed by the same developer. They were based on FCOS
and YOLOV4 to detect humans from thermal data.

There have also recently been some UAV systems for
general object detection [14, 13, 34]. Among them, a system
used the most advanced object detection algorithm to perform
real-time object detection on UAV [29] was proposed in 2017,
with the great reference value for this paper. It provides the
best object detection configuration selection, which makes us
germinate the idea of self-adaptation algorithm selection.

VI. CONCLUSION

In this paper, we constructed an airborne altitude-adaptive
purpose-related UAV system for object detection, Aprus.
To develop the system, we collected and provided a high-
resolution UAV dataset with altitude, UDWA, which is publicly
available at GitHub. UDWA contains 39 scenes, 6 altitudes
(from 50 meters to 100 meters), and 46037 pictures with a res-
olution of 3840%2160. We leveraged 2866 annotated pictures
to build the system. We elaborately constructed seven different
purposes based on three technologies: the high-resolution
image divider, purpose-related evaluation indicator (PEI) for
model selection, and altitude-driven self-adaptation algorithm.
Among the most commonly used Balance purposes, the
Aprus obtained 58.52%mAP, 94.17%mAP, 66.17%mAR,
and 1.61FPS results on DJI Manifold 2G. It consumes only

7.94Wh of power during one flight. and the PET has increased
by 6.64% compared to without the Aprus system.
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